skip to main content


Search for: All records

Creators/Authors contains: "Greer, Julia R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It has been a long-standing challenge in modern material design to create low-density, lightweight materials that are simultaneously robust against defects and can withstand extreme thermomechanical environments, as these properties are often mutually exclusive: The lower the density, the weaker and more fragile the material. Here, we develop a process to create nanoarchitected carbon that can attain specific strength (strength-to-density ratio) up to one to three orders of magnitude above that of existing micro- and nanoarchitected materials. We use two-photon lithography followed by pyrolysis in a vacuum at 900 °C to fabricate pyrolytic carbon in two topologies, octet- and iso-truss, with unit-cell dimensions of ∼2 μm, beam diameters between 261 nm and 679 nm, and densities of 0.24 to 1.0 g/cm3. Experiments and simulations demonstrate that for densities higher than 0.95 g/cm3the nanolattices become insensitive to fabrication-induced defects, allowing them to attain nearly theoretical strength of the constituent material. The combination of high specific strength, low density, and extensive deformability before failure lends such nanoarchitected carbon to being a particularly promising candidate for applications under harsh thermomechanical environments.

     
    more » « less
  2. Abstract

    Hierarchy in natural and synthetic materials has been shown to grant these architected materials properties unattainable independently by their constituent materials. While exceptional mechanical properties such as extreme resilience and high deformability have been realized in many human‐made three‐dimensional (3D) architected materials using beam‐and‐junction‐based architectures, stress concentrations and constraints induced by the junctions limit their mechanical performance. A new hierarchical architecture in which fibers are interwoven to construct effective beams is presented. In situ tension and compression experiments of additively manufactured woven and monolithic lattices with 30 µm unit cells demonstrate the superior ability of woven architectures to achieve high tensile and compressive strains (>50%)—without failure events—via smooth reconfiguration of woven microfibers in the effective beams and junctions. Cyclic compression experiments reveal that woven lattices accrue less damage compared to lattices with monolithic beams. Numerical studies of woven beams with varying geometric parameters present new design spaces to develop architected materials with tailored compliance that is unachievable by similarly configured monolithic‐beam architectures. Woven hierarchical design offers a pathway to make traditionally stiff and brittle materials more deformable and introduces a new building block for 3D architected materials with complex nonlinear mechanics.

     
    more » « less
  3. Abstract

    Additive manufacturing (AM) of complex three‐dimensional (3D) metal oxides at the micro‐ and nanoscales has attracted considerable attention in recent years. State‐of‐the‐art techniques that use slurry‐based or organic–inorganic photoresins are often hampered by challenges in resin preparation and synthesis, and/or by the limited resolution of patterned features. A facile process for fabricating 3D‐architected metal oxides via the use of an aqueous metal‐ion‐containing photoresin is presented. The efficacy of this process, which is termed photopolymer complex synthesis, is demonstrated by creating nanoarchitected zinc oxide (ZnO) architectures with feature sizes of 250 nm, by first patterning a zinc‐ion‐containing aqueous photoresin using two‐photon lithography and subsequently calcining them at 500 ºC. Transmission electron microscopy (TEM) analysis reveals their microstructure to be nanocrystalline ZnO with grain sizes of 5.1 ± 1.6 nm. In situ compression experiments conducted in a scanning electron microscope show an emergent electromechanical response: a 200 nm mechanical compression of an architected ZnO structure results in a voltage drop of 0.52 mV. This photopolymer complex synthesis provides a pathway to easily create arbitrarily shaped 3D metal oxides that could enable previously impossible devices and smart materials.

     
    more » « less